
N92-22717 !

TRANSPORTABLE APPLICATIONS ENVIRONMENT (TAE) PLUS

a NASA tool for Building and Managiag Graphical User Interfaces

Martha R. Szczur

NASA/Goddard Space Flight Center
Greenbelt, MD 20771 USA

mszczur@postman.gsfc.nasa.gnv
301 286-8609

ABSTRACT

The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an
advanced portable user interface development environment which simplifies the process of creating and managing
complex application graphical user interfaces (GUIs), supports pmtotyping, allows applications to be ported easily
between different platforms and encourages appropriate levels of user interface consistency between applications.
This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing
GUIs easier for the application developers. TAE Plus is being applied to many types of applications, and this paper
discusses what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic
workstations, and how it has been used both within and outside NASA.

BACKGROUND

Emer_mm of _hical user _

With the recent emergence of sophisticated graphic workstations and the subsequent demands for highly interactive
systems, designing and developing good user interfaces has become more complex and difficult. Prior to the
graphic workstations, the application developer was primarily concerned with developing user interfaces for a single
monochrome 80x24 alphanumeric character screen with keyboard user entry. With high resolution bit-mapped
workstations, the user interface designer has to be cognizant of multiple window displays, the use of color, graphical
objects and icons, and various user selectiou techniques (e.g., mouse, trackball, tablets).

High resolution graphic workstations also provide system developers with the opportunity to rethink and redesign
the user interfaces (UI) of their next generation applications. For instance, in a command and control environment,
many processes run simultaneously to monitor a particularoperation. With modern graphic workstations, time-
critical information concerning multiple events can be displayed concurrently on the same screen, organized into

different windows in a variety of graphical and textual presentations. As today's workstations inspire more elaborate
user interfaces, the applications which utilize their graphics capabilities increase in complexity. Productivity tools to
aid in the defmition and management of user interfaces, thus, become an increasingly important element in the appli-
cation's prototyping-to-operational development cycle.

Rmtfirememsfora m3t_y__" -m439erafimalcL_velonmemenvhmment
To support our development cycle we wanted to establish an integrated environment that allows pmtotylx_ user
interfaces to evolve into operational applications. This environment would satisfy the following objectives:

separate the user interface from the application,
provide tools to allow interactive design/change/save of user interface elements,
take advantage of the latest hardware technology,
support rapid prototyping,
manage the user interface,
develop tools for increasing application development productivity,
provide the application with runtime services, and
allow portability to different computing environments.

366

Many of these objectives were addressed in the early 1980's when GSFC recognized that most large-scale space
applications, regardless of function, required software to support human-computer interactions and application
management. This lead to the design and implementation of the Transportable Applications Executive (now,
referred to as TAE Classic), which abstracts a common core of system service routines and user dialog techniques

used by all applicationsl. Over the years, TAE Classic has matured into a powerful tool for quickly and easily
building and managing consistent, portable user interfaces, but only for the standard alphanumeric terminal. Not
only did TAE Classic improve the productivity of a single application's development life cycle by providing the
programmers with an easy and standard method for creating menus, prompting for parameters and building
command procedures, but, because the tool was generic and reusable for multiple applications, the productivity gain
for implementation increased exponentially. Other gains were real!zeal in a significant reduction in application
testing time (i.e., the user interface component, TAE, is reliable, debugged software) and maintenance overhead (i.e.,
application code uses TAE services, thus becoming hardware and operating system independent, which simplifies
making application changes and enhancements.)

In the past six years, the emergence of the low-cost graphic workstation has enabled development of innovative
graphical user interfaces (GUIs). Along with this new capability and flexibility comes a significant increase in the
complexity of developing these graphical user interfaces. The army of new UI elements associated with GUIs (e.g.,
windows, panes, color, direct manipulation, programmable cursors) requires the developer/programmer to under-
stand a complex new software environment (e.g., the X Window System TM, "widget" architecture, OSF/Motif TM and
AT&'Fs Open Look TM user interfaces.) This required expertise can Iranslate into an increase in programmer
training. Further, maintenance nightmares can occur as the low-level windowing systems are upgraded/changed.
Frequently the cost of rite GUI development can increase to the point where it exceeds the application-specific
components. At GSFC we wanted to take advantage of the new GUI capabilities, but needed a way to improve the
productivity of developing an application's graphical user interface component. We took advantage of the lessons
learned in the TAE Classic development. By utilizing some of the internal data slructures and features of the orig-
inal TAE software, we developed a set of tools which support the building and management of GUIs. This advanced
version of TAE is called TAE Plus (i.e., TAE Plus graphics support).

WHAT DOES TAEPLUS PROVIDE?.

To meet the defined goals, services and tools were developed for creating and managing window-oriented user inter-
faces. It became apparent, due to the flexibility and complexity of graphical user interfaces, that the design of the
user interface should be considered a separate activity from the application program design. The interface designer
can then incorporate human factors and graphic art techniques into the user interface design. The application

programmer needs only to be concerned about
what results are returned by the user interaction
and not the look of the user interface.

Figure I. TAE Structure

Flunrtm F_J,,tmmM

In support of the user interface designer, an
interactive WorkBench application was imple-
mented for manipulating interaction objects
ranging from simple buttons to complex multi-
object panels. As illuslrated in Figure 1, after
designing the screen display, the WorkBench
saves the specification of the user interface in
resource files, which can then be accessed by
application programmers through a set of
runtime services, Window Programming Tools
(WITs). Guided by the information in the
resource fdes, the routines handle all user inter-
actions. The Wlrl's utilize Open Software Foun-

367

dation's Motif m and the standard MIT X Window System TM to communicate with the graphic workstations. 2 As a

further aid to the UI developer, the WorkBench provides an option to generate the source code which will display

and manage the designed user interface. This gives the programmer a working template into which appfication-

specific code can be added.

_w_c Owm¢
_woe OwnJ
¢)wwn

wm_d muir

: Ulilm I
4 ,.h_M |

/gl
_4

Text Camgory:

DynarnlcText: Value [Kevlnl1234SS7U II LAeSL

Huld-Llne Ildlt r_ mq_y (sam mvme:li_)

V_dousn,mac_b..,m..,.I[] _,'*Sl*nnthb,b_l,,_-myml Jq

IH-'---g" II

.... _, _,.m OblKte'_mlp_ --

8tmsrJhe_

Mowom

I The cUfllnt altltu4e le : 150 km I]Die.mile

DTmmle Tezt

Figure 2. TAE Plus User Interface Interaction Objects

INTERACTION O_ AS BUILDING
BLOCKS

The basic building blocks for developing an

application's GUI are a set of interaction objects.

All visually distinct elements of a display that are
created and managed using TAE Plus are consid-

ered to be interaction objects and they fall into

three categories: user-entry objects, information

objects, and data-driven objects. User-entry

objects are mechanisms by which an application

can acquire information and directives from the

end user. They include radio buttons, check boxes,

text entry fields, scrolling text lists, pulldown
menus and push buttons. Information objects are

used by an application to instruct or notify the user,
such as contextual on-line help information
displayed in a scrollable static text object or brief

status error messages displayed in a bother box.

Data-driven objects are vector-drawn graphic

objects which are linked to an appfication data
variable; elements of their view change as the data

values change. Examples are dials, thermometers,

and strip charts. When creating user dialogues,
these objects are grouped and arranged within

panels (i.e., windows) in the WorkBench.

The use of interaction objects offers the application
designer/programmer a number of benefits with

the expected payoff of an increase in programmer

productivity. The interaction objects provide a
consistent look and feel for the application's user

interface, which translates into reduced end-user

training time, more attractive screens, and an appli-
cation which is easier to use. Another key benefit

is that since the interaction objects have been thor-

oughly tested and debugged, the programmer is

able to spend more time testing the application and

less time verifying that the user interface behaves

correctly. This is particularly important consid-

ering the complexity of some of the objects, and

the programming effort it would take to code them-

from scratch. Refer to Figure 2 for a sample of the

TAE Plus interaction objects.

368

TAE PLUS WORKBENCH

The WoABench provides an intuirive environment for def'ming, testing, and communicating the look and feel of an
application system. Functionally, the WorkBench allows an application designer to dynamically lay out an applica-
tion screen, defining its static and dynamic areas. The tool provides the designer with a choice of pre-designed
interaction objects and allows for tailoring, combining and rearranging of the objects. To begin the session, the
designer needs to create the base panel (i.e., window) into which interaction objects will be specified. The designer
specifies presentation information, such as the rifle, font, color, and optional on-line help for the panel being created.
The designer defines both the presentation information and the context information of all interaction items to reside
in the panel by using the item specification window (refer to Figure 3). For icon support, the WorkBench has an
icon editor, within which an icon can be drawn, edited and saved. As the UI designer moves, re.sizes, and alters any
of the item's attributes, the changes are dynamically reflected on the display screen.

The designer also has the option of retrieving palettes of previously created items. The ability to reuse interaction
objects saves programming time, facilitates experimenting with different combinations of items in the prototyping
process, and contributes to standardization of the application's look and feel. If an applicarion system manager wants
to enstwe consistency and uniformity across an entire application's U-I, all developers could be instructed to use only
items from the application's palette of common items.

When creating a data-driven object, the designer goes through a similar process by setting the associated attributes
(e.g., color thresholds, maximum, minimum, update delta) in the specification panels. To create the associated
graphics drawing, the WoA.Bench provides a drawing tool within which the static background and dynamic fore-
ground of a data-driven object can be drawn, edited, and saved. Figure 4 shows the drawing tool being used to
create a stretcher data-driven objecL

Most often an application's UI will be made up of a number of related panels, sequenced in a meaningful fashion.
Through the WorkBench, the designer defines the interface connecdons. These links determine what happens when
the user selects a button or a menu entry. The designer attaches events to interacrion items and thereby designates
what panel appears and/or what program executes when an event is Iriggered. Events are triggered by user-
controlled I/O peripherals (e.g., point and click devices or keyboard input).

TAE Plus also offers an oprioual help feature which provides a consistent mechanism for supplying application-
specific information about a panel and any interaction items within the panel. In a typical session, the designer
elects to edit a help file after all the panel items have been designed. Clicking on the edit help option in the Panel
Speciftcarion Panel brings up a text editor window in which the appropriate information can be entered. The
designer can then define any button item or icon item to be the help item for the panel (in this scenario it would be
the help icon in the panel "Monitor".) During the application operation, when the end-user clicks on the question
mark item, the cursor changes to a question mark symbol (7). The end-user then clicks on the panel itself or any
item in the panel to bring up a help panel containing the associated help text.

Having designed Ihe layout of panels and their attendant items and having threaded the panel and items according to
their interacrion scenario, the designer is able to preview (i.e., rehearse) the interface's operation from the Work-
Bench. With this potenrial to test drive an interface, to make changes, and to test again, itemrive design becomes
part of the development process. With the rehearsal feature, the designer can evaluate and refine both the function-
ality and the aesthetics of a proposed interface. After the rehearsal, control is returned to wherever the designer left
off in the Wod_Bench and the designer can either continue with the design process or save the defined UI in a
resource file.

Developing softwm'e with sophisticated user interfaces is a complex process, mandating the support of varied
talents, including human factors experts and application program specialists. Once the UI designer (who may have
limited experience with actual code development) has finished the UI, he/she can turn the saved UI resource file

over to an experience_d prognunmer. As a furtheraid to the application programmer, the WorkBench has a
"generate"feature, which produces a fully annotated and operational body of code which will display and manage
the entire WorkBench-designed UI. Currently, source code generation of C, Ada, and the TAE Command

369

THb| I Iiillt I_| i

i_ r--_--] F-_l

I_I I °_Y I

Channel I

Fi&ure 3. Bldldin& a user interface with the WorkBench

Figure 4. Creating a stretcher data-driven object

370

Language (TCL) (an interpreted prototyping language) are supported, with bindings for C++ expected in a future

release of TAE Plus. The programmer can now add additional code to this template and make a fully functional

application. Providing these code stubs helps in establishing uniform programming method and style across large
applications or within a family of interrelated software applications.

WINDOW PROGRAMMING TOOLS (WPTS)

The Window Pmgrmnming Tools (WPTs) are a package of application program callable subroutines used to control

an application's user interface. Using these routines, applications can define, display, receive information from,
update and/or delete TAE Plus panels and interaction objects. WPTs support a modeless user interface, meaning a

user can interact with one of a number of interaction objects within any one of a number of displayed panels. In

contrast to sequential mode-oriented programming, modeless programming accepts, at any instance, a number of

user inputs, or events. Because these multiple events must be handled by the application program, event-driven

programming can be more complex than traditional programming. The WorkBench's auto-generation of the WPT

event loop reduces the risk of programmer err_ within the UI portion of an application's implementation.

The WPT package utilizes the the MIT X Window System, as its standard windowing system. One of the strengths

of X is the concept of providing a low-level abstraction of windowing support (Xlib), which becomes the base stan-

dard, and a high-level abstraction (X tool_kits), which has a set of interaction objects (called "widgets" in the X

world) that deC'meelements of a UI's look and feel. Due to the growing acceptance of the OSF/Motif user interface

style as a defacto industry standard, the latest release of TAE Plus (V5.1) is based on the Motif software.

The WPTs also provide a buffer between the application program and the Motif toolkit and Xlib services. For
instance, to display a WorkBench-designed panel, an application makes a single call to Wpt_NewPanel (using the

panel name specified in the WorkBench). This single call translates into a function that can make as many as 50
calls to Motif library routines. For the majority of applications, the WPT services and objects supported by the

WorkBench provide the necessary user interface tools and save the programmer from having to learn the complexi-
ties of programming directly with Motif and X. This can be a significant advantage, especially when considering

the learning curve differential between 40 WPT routines versus over 400 X Toolkit intrinsics and over 200 Xlib
services.

IMPLEMENTATION

The TAE Plus architecture is based on a separation of the user interaction management from the application-specific

software. The cun_t implementation is a result of having gone through several prototyped and beta versions of a

WorkBench and user interface support services during the 1986-89 period, as well as building on the TAE Classic
strt_ture.

The "Classic n portion of the TAE Plus code is implemented in the C programming language. In selecting a

language for the WorkBench and the WIrl "runtime services, we felt a "true" object-oriented language would

provide us with the optimum environment for implementing the TAE Plus graphical user interface capabilities. (See

Chapter 9 of Cox 4 for a discussion on the suitability of object-oriented languages for graphical user interfaces.) We

selected C++ 5 as our implementation language for several reasonst. For one, C++ is becoming increasingly

popular within the object-oriented programming community. Another strong argument for using C++ was the avail-

ability of existing, public domain, X-based object class libraries. Utilizing an existing object library is not only a
cost saver, but also serves as a learning tool, both for object-oriented Im3gramming and for C++. Delivered with the

X Window System is the InterViews C++ class library and a drawing utility, idraw, both of which were developed

at Stanford UniversityT. The/draw utility is a drawing editor, which we integrated into the WorkBench to support

creating, editing and saving the graphical data-driven interaction objects. This reuse of existing software enabled

the addition of a major new function without the significant cost and time of implementing a drawing editor from
scratch.

371

The single most important factor contributing to the portability of TAE Plus is the X Window System. Generally, if
a graphic workstation supports the Xlib and the OSF/MOtif X Toolkit and operates either UNIX or VMS, TAE Plus
can be ported to it with reasonable ease. For instance, TAE Plus is operational on the following UNIX platforms:
Sun workstations, Apollo, VAXstation II, DECstation 3100, HP9000, Musscomp, Silicon Cn'aphicsIris, NEC EWS
4800/220 and Macintosh II (A/UX). TAE Plus is also available and validated on the VAXstation II and VAXsta-
tion 3100 under VMS.

TAE PLUS AS A PRODUCTIVITY TOOL

For years the software industry has been searching for ways to quantify the software development process allowing
for accurate measurement of Woductivity. Due to the cerebral versus mechanical nature of software development
this is a difficult t,_k, which has lead to a large volume of published approaches on how to improve software produc-

tivity.8 Barry Boehm identifies six primary options for improving software productivity9 and TAE Plus addresses
each one of these options at some level.

Getting the best from ueopl_

To get the maximum productivity from each member of a development team individuals should be utilized in the
areas that they have an expertise. Too often the people designing application user interfaces are the programmers,
who most often do not have any training in human factors or graphic art techniques. This lends to be an ineffective
use of the programmers expertise, and frequently results in a less than optimum user interface. The WorkBench was
designed to eliminate this problem giving the user interface design experts a t0ol that is easy to use (i.e., does not
require programming skills), while freeing up the programmer to concentrate on the application specific code.

Make stfos more effigient
As stated by Boehm, "the primary leverage factor in making the existing software process steps more efficient is the
use of software tools to automate the current repetitive and labor-intensive portions of each step." Prior to a tool like
the WorkBench, the layout of the user interface involved either paper and pen mockups and layouts, or programmers
creating the UI as they coded. In either case, the availability of an interactive user interface layout tool that allows
the designer to define and build the UI in a W'YSIWYG manner, makes the UI design process mote efficient.

tliminat Ama
The next productivity option is to automate a previous manual step, thus eliminating the step entirely. TAE Plus
provides the capability to automatically generate the application code that manages the designed UI. This eliminates
the process of the application programmer having to manually generate and key in this code, thus reducing the likeli-
hood of keyboard errors or incorrect function calls. Particularly in cases where the application is heavily interactive,
this automatic code generation can account for the majority of the application code and significantly improve
productivity of the development process.

Eliminating Rework
Information hiding and prototyping are both ways that contribute to avoidance of reworking code. In TAE Plus, all
the details of the user interface are hidden from the application. For instance, the application calls on a WPT routine
(i.e., Wpt_NewPanel) to display a panel and its interaction objects. The application is not interested in whether the
user is being presented with a radio button bank or.a scrollable text list, but it is interested in which choice the user
makes from this interaction object. The actual display and management of the UI is handled within the WITs, thus
isolating the UI code from the application. During an application's evolution, this approach of hiding details within
the WPTs minimizes or eliminates the impact that changes to the UI hardware, the windowing system, the object
class, etc., will have on the application.

Building simpler prodt_cts
The number of software soun_e instructions programmed during an application's development has the most signifi-
cant influence on software costs. One approach to improving productivity is to reduce this number by building
simpler products and eliminating "software gold plating: extra software that not only consumes extra effort but also

reduces the conceptual integrity of the product."9 Using rapid prototyping as a step in the specification process can

frequently prevent the over specification of functions by users who are worried that if they don't specify everything

372

that can think of, then the system will not have some fmgtion they need. Although there is no guarantee that rapid
prototyping will result in a simpler program, it fosters a dialog between the developers and the user that can solidify
the real system requirements and specifications. As a tool that enables rapid prototypes to be built quickly and
easily, TAE Plus can be used to design simpler applications.

Reusing Components

Another way to reduce the amount of source code written for an application is to reuse existing soRware. TAE Plus
was designed with software reuse as a primary goal. The WPT runtime services offload all of the display and
management of the UI from the application code. This approach enables the application programmer to concentrate
fully on the appfication-slg_ific functions, and not be concerned with the UI code. Also, TAE Plus itself reuses
existing standard windowing softwa_re (e.g., MIT's X Window System, OSF/Motif, Stanford's Interview object
classes), thus improving the productivity of its own development.

TAE PLUS CASE STUDIES

One way to measure how effective TAE Plus is as a productivity tool is to develop the same application twice, one
time using TAE Plus and another time not using TAE Plus. While most users feel certain that TAE Plus is saving
them development time, they are on tight development schedules and do not have the interest in building l_h'allel

UIs. However, a few case studies in which the same user interface was devel-
Houlm

80

60

40

20

4
o TAE¢.

go

Xllb

Figure 6. CaseStudy I

oped with and without TAE Plus give evidence that the productivity gain can
be impressive.

In Case 1, a programmer from General Electric developed a simple screen
copy utility which gathers information through radio buttons, action icons, and
text input. Then, it sends the information to an lip printer, as well as updating
a text widget on the screen. When be did not use TAE Plus and wrote the UI
code directly within the application code, it took him 80 hours to develop an
operational application. When he used the TAE Plus WorkBench to develop
the same operational application, it took him 4 hours. This productivity gain
of 95% is illustrated in Figure 6. However, it should be noted that the gain
does not take into account the unmeasured factor that "it is always easier the
second time around."

Figure 2 illustrates Case 2. A wogrammer at NASA with no TAE Plus experience, but with X Window System
experience, was tasked to write a simple application and wxount for the time spent on developing it with and
without TAE Plus. The application has two panels, a few action icons, a radio button bank, and a dynamic mover

object that moves along a static backsround when the associated data value changes. Including the time it took to
learn how to use the WorkBench to the completion of the operational
application, it took him 9 hours. (Note: an experience! TAE Plus user How

did the same applkation in 1.5 hours.) The application developed so
without TAE Plus (thus, malting direct calls to the X Window System)
took him 52 hours, and this implementation was still a "bit buggy." 4o
Even as a beginner TAE Plus user, it took him over four limes longer to
develop the applkation without TAE Plus. In the case of the experi- ae
enced TAE Plus user, the productivity gain was even mote dramatic,
with a 96% increase in development of the application. Although these ae
case studies certainly do not provide enough statistical data to allow

xo
any grandiose conclusions to be made. they do demonstrate real cases

in which using a GUI development tool, in this case TAE Plus, has o
significantly dggreased the time it takes to develop the application. In
general, TAE Plus reduces the time it takes a developer to create, test
and deliver a software system.

1.S

U,.Jn8 TAg.
ObwerO

Figure Z Case Study2

373

AVAILABILITY AND MAINTENANCE

In April 1991 TAE Plus 5.1, which uses the latest version of OSF Motif TM (VI.I), became available from COSMIC,
the NASA's software distribution center located at the University of Georgia. Versions for numerous UNIX work-
stations (e.g., Suns, DECstation 3100, HPg000, Apollo) and for VMS/DECWindows TM may be licensed at a nominal
fee.

Maintenance of a software system is a key factor in its success, and while every system is maintainable, how easy it
is to maintain is the real issue. We knew when we began development that TAE Plus was targeted for wide applica-
tion utilization and for different machines, so ease of maintenance has always been important. By providing the
application-callable WPTs, applications are isolated from the windowing system. Thus, when the latest release or
next generation windowing system shows up, only the WPTs will require updating or rewriting; the application code
will not be affected.

User support is another facet of maintainability. Since the lust release of TAE Classic in 1981, we have provided
user support through a fully staffed Support Office. This service has been one of the primary reasons for the success
of TAE. Through the Suppon Office, users receive answers to technical questions, report problems, and make
suggestions for improvements. In turn, the Support Office keeps users up-to-date on new releases, provides a news-
letter, and sponsors user workshops and conferences. This exchange of information enables the Project Office to

keep the TAE software and documentation "in working order"and, perhaps most importantly, take advantage of user
feedback to help direct our future development.

APPLICATIONS USING TAE PLUS

Since 1982 over 900 installation sites have received TAE Classic and/or TAE Plus. The applications built or being

built with TAE perform a variety of different functions. TAE Classic usage was primarily used for building and
managing large scientific data analysis and database systems (e.g., NASA's Land Analysis System CLAS), Atmos-
pberic and Oceanographic Information Processing System (AOIPS), and JPL's Multimission Image Processing
Laboratory (MIPL) system.) Within the NASA community, TAE Plus is also used for scientific analysis applica-
tions, but the heaviest concenlration of user applications has shifted to support of realtime control and processing
applications. This includes supporting satellite data capture and processing, monitor and control of spacecraft and
science instruments, prototyping user interface of the Space Station Freedom crew workstations and supporting diag-
nostic display windows for realtime control systems in ground operations. For these types of applications, TAE Plus
is principally used to design and manage the user interface, which is made up of a combination of user entry and
data-driven interaction objects. TAE Plus becomes a part of the development life cycle as projects use TAE Plus to
prototype the initial user interface design and have this designed user interface evolve into the operational UI.

Outside the NASA community, TAE Plus is being used by an assortment of othergovernment agencies (13%),
unive_'sities (15%), and private industries (40%). Within the government sector, users range from the National
Center for Atmospheric Research, National Oceanographic and Atmospheric Adminstration, U.S. Geological and
EROS Data Center, who m'edeveloping scientific analysis, image mapping and data distribution systems, to
numerous Department of Defense laboratories, who are building command-and-control systems. Universities repre-
sented among the TAE community include Comell, Georgia Tech, MIT, Stanford, University of Maryland and
University of Colorado. Applications being developed by University of Colorado include the Operations and
Science Instrument Support System(OASIS), which monitors and controls spacecraft and science instruments and a
robotics testhed for research into the problems of construction and assembly in space.10 Private industry has been a
large consumer of the TAE technology and a sample of the companies that have received TAE Plus include Apple
Computer Inc., Lorai Aerospace, Martin Marietta, Computer Sciences Corp., TRW, Lockheed, IBM, Northern
Telecom, MItre Corp., General Dynamics and GTE Government Systems. These companies are using TAE Plus for
an assortment of applications, ranging from a front-end for a corporate database to advanced network control center.
Northern Telecom, Inc. used TAE Plus to develop a technical assistance service application which enables users to

374

easily access a variety of applications residing on a network of heterogeneous host comlmters.11 Because of the
high cost associated with programming and software-development, mote and more software development groups are
looking for easy-to-use productivity tools, and TAE Plus has become recognized as a viable tool for developing an
application's user interface.

NEXT STEPS

The current TAE Plus provides a useful tool within the user interface development environment -- from the initial
design phases of a highly interactive prototype to the fully operational application package. However, there are
many enhancements and new capabilities that will be added to TAE Plus in future releases.

In the near term, the emphasis will be on enhancements and extensions to the WorkBench. All the requested
enhancements are user-driven, based on actual experience using TAE Plus, or requirement-driven based on an appli-
cation's design. For example, on the enhancements list are extensions to the interaction objects, (e.g., graph data-
driven object, form fall-in), support for importing foreign graphics, refinements in the code generation feature, exten-
sions to the connections feature (e.g., graphic representation of the connection mapping, item-to-item connections),
and multiple console support.

Future advancements include expanding the scope of TAE Plus to include new tools and technologies. For instance,
the introduction of hypermedia technology and the integration of expert system technology to aid in making user
interface design decisions are targeted for investigation and prototyping.

CONCLUSION

With the emergence of sophisticated graphic workstations and the subsequent demands for highly interactive
systems, the user interface becomes mote complex and includes multiple window displays, the use of color, graph-
ical objects and icons, and various selection techniques. Software tools, such as TAE Plus, are providing ways to
make user interface developer's tasks easier and improve the overall productivity of the development IXOCess. This
includes supporting prototyping of different user interface designs, as well as development and management of the
operational application's user interface.

TAE Plus is an evolving system, and its development will continue to be guided by user-defined requirements. To
date, each phase of TAE Plus's evolution has taken into account advances in windowing systems, human factors
research, command language design, standardization efforts and software portability. With TAE Plus's flexibility
and functionality, it is providing a useful productivity tool for building and managing graphical user interfaces.

ACKNOWLEDGEMENTS

TAE Plus is a NASA software product being developed by the NASA/Goddard Space Flight Center with prime
contract support by Century Computing, Inc. The work is sponsored by the NASA Office of Space Operations.

TAE is a registered trademark of National Aeronautics and Space Adminislration (NASA). It is dislributed through
NASA's distribution center, COSMIC, (404) 542-3265. For further information, contact COSMIC and/or the TAE
Suppc_ Office at GSFC, (301) 286-6034.

REFERENCES

1. Perkins, D.C., Howell, D.R., S_zur, M.R,, "The Transportable Applications Executive -- an interactive design-
to-production development system, nDigital Image Processing In Remote Sensing, edited by $-P Muller, Taylor &
Francis Publishers, London, 1988.

375

2. Scheifler, Robert W., Gettys, Jim., "The X Window System," MIT Laboratory for Computer Science,

Cambridge, MA, October 1986.

3. Open Software Foundation, Inc., OSF/Motif TM Programmer's Reference Manual, Revision 1.1, 1990

4. Cox, Brad J., Object Oriented Programming, An Evolutionary Approach, Addison-Wesley Publishing Company,
Reading, MA, 1986.

5. Stroustrup, Bjarne, The C+ + Programming Language, Addison-Wesley Publishing Company, Reading, MA,
1987.

6. Szczur, Martha R., Miller, Philip, "Transportable Applications Environment (TAE) Plus: Experiences in

'Object'ively Modernizing a User Interface Environment," Proceedings of the OOPSLA Conference, September
1988.

7. Linton, Mark A., Vlissides, John M., Calder, Paul R., "Composing User Interfaces with Interviews," IEEE

Computer, February, 1989.

8. Evans, M.W., Piazza, P., Dolkas, J.B., Principles of Productive Software Management, John Wiley and Sons
Publishers, 1983.

9. Boehm, Barry, "Improving Software Productivity", IEEE Computer, September, 1987, pp. 43-57

10. Klemp, Marjorie, "TAE Plus in a Command and Control Environment", Proceedings of theTAE Eighth Users'
Conference, June, 1990

11. Sharma, Alok, et al., "The TAS Workcenter: An Application Created with TAE", Proceedings of the TAE
Eighth Users' Conference, June, 1990

376

